Your browser doesn't support javascript.
loading
Disruption of cytochrome c heme coordination is responsible for mitochondrial injury during ischemia.
Birk, Alexander V; Chao, Wesley M; Liu, Shaoyi; Soong, Yi; Szeto, Hazel H.
Afiliação
  • Birk AV; Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
  • Chao WM; Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
  • Liu S; Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
  • Soong Y; Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
  • Szeto HH; Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA. Electronic address: hhszeto@med.cornell.edu.
Biochim Biophys Acta ; 1847(10): 1075-84, 2015 Oct.
Article em En | MEDLINE | ID: mdl-26071084
ABSTRACT

BACKGROUND:

It was recently suggested that electron flow into cyt c, coupled with ROS generation, oxidizes cyt c Met(80) to Met(80) sulfoxide (Met-O) in isolated hearts after ischemia-reperfusion, and converts cyt c to a peroxidase. We hypothesize that ischemia disrupts Met(80)-Fe ligation of cyt c, forming pentacoordinated heme Fe(2+), which inhibits electron transport (ET) and promotes oxygenase activity.

METHODS:

SS-20 (Phe-D-Arg-Phe-Lys-NH2) was used to demonstrate the role of Met(80)-Fe ligation in ischemia. Mitochondria were isolated from ischemic rat kidneys to determine sites of respiratory inhibition. Mitochondrial cyt c and cyt c Met-O were quantified by western blot, and cristae architecture was examined by electron microscopy.

RESULTS:

Biochemical and structural studies showed that SS-20 selectively targets cardiolipin (CL) and protects Met(80)-Fe ligation in cyt c. Ischemic mitochondria showed 17-fold increase in Met-O cyt c, and dramatic cristaeolysis. Loss of cyt c was associated with proteolytic degradation of OPA1. Ischemia significantly inhibited ET initiated by direct reduction of cyt c and coupled respiration. All changes were prevented by SS-20.

CONCLUSION:

Our results show that ischemia disrupts the Met(80)-Fe ligation of cyt c resulting in the formation of a globin-like pentacoordinated heme Fe(2+) that inhibits ET, and converts cyt c into an oxygenase to cause CL peroxidation and proteolytic degradation of OPA1, resulting in cyt c release. GENERAL

SIGNIFICANCE:

Cyt c heme structure represents a novel target for minimizing ischemic injury. SS-20, which we show to selectively target CL and protect the Met(80)-Fe ligation, minimizes ischemic injury and promotes ATP recovery.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article