Your browser doesn't support javascript.
loading
Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock.
Abe, Jun; Hiyama, Takuya B; Mukaiyama, Atsushi; Son, Seyoung; Mori, Toshifumi; Saito, Shinji; Osako, Masato; Wolanin, Julie; Yamashita, Eiki; Kondo, Takao; Akiyama, Shuji.
Afiliação
  • Abe J; Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan.
  • Hiyama TB; Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan.
  • Mukaiyama A; Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan. Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan.
  • Son S; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
  • Mori T; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan. Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan.
  • Saito S; Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan. Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan. Depa
  • Osako M; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
  • Wolanin J; Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan. PSL Research University, Chimie ParisTech, 75005 Paris, France.
  • Yamashita E; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita 565-0871, Japan.
  • Kondo T; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
  • Akiyama S; Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan. Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan. akiy
Science ; 349(6245): 312-6, 2015 Jul 17.
Article em En | MEDLINE | ID: mdl-26113637
ABSTRACT
Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Ritmo Circadiano / Adenosina Trifosfatases / Domínio Catalítico / Synechococcus / Peptídeos e Proteínas de Sinalização do Ritmo Circadiano / Relógios Circadianos Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Ritmo Circadiano / Adenosina Trifosfatases / Domínio Catalítico / Synechococcus / Peptídeos e Proteínas de Sinalização do Ritmo Circadiano / Relógios Circadianos Idioma: En Ano de publicação: 2015 Tipo de documento: Article