Nitrogen Doping Enables Covalent-Like π-π Bonding between Graphenes.
Nano Lett
; 15(8): 5482-91, 2015 Aug 12.
Article
em En
| MEDLINE
| ID: mdl-26151153
The neighboring layers in bilayer (and few-layer) graphenes of both AA and AB stacking motifs are known to be separated at a distance corresponding to van der Waals (vdW) interactions. In this Letter, we present for the first time a new aspect of graphene chemistry in terms of a special chemical bonding between the giant graphene "molecules". Through rigorous theoretical calculations, we demonstrate that the N-doped graphenes (NGPs) with various doping levels can form an unusual two-dimensional (2D) π-π bonding in bilayer NGPs bringing the neighboring NGPs to significantly reduced interlayer separations. The interlayer binding energies can be enhanced by up to 50% compared to the pristine graphene bilayers that are characterized by only vdW interactions. Such an unusual chemical bonding arises from the π-π overlap across the vdW gap while the individual layers maintain their in-plane π-conjugation and are accordingly planar. The existence of the resulting interlayer covalent-like bonding is corroborated by electronic structure calculations and crystal orbital overlap population (COOP) analyses. In NGP-based graphite with the optimal doping level, the NGP layers are uniformly stacked and the 3D bulk exhibits metallic characteristics both in the in-plane and along the stacking directions.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2015
Tipo de documento:
Article