Your browser doesn't support javascript.
loading
Bone marrow microenvironment modulation of acute lymphoblastic leukemia phenotype.
Moses, Blake S; Slone, William L; Thomas, Patrick; Evans, Rebecca; Piktel, Debbie; Angel, Peggi M; Walsh, Callee M; Cantrell, Pamela S; Rellick, Stephanie L; Martin, Karen H; Simpkins, James W; Gibson, Laura F.
Afiliação
  • Moses BS; Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV.
  • Slone WL; Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV.
  • Thomas P; Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV.
  • Evans R; Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV.
  • Piktel D; Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV.
  • Angel PM; Protea Bioscience, Morgantown, WV.
  • Walsh CM; Protea Bioscience, Morgantown, WV.
  • Cantrell PS; Protea Bioscience, Morgantown, WV.
  • Rellick SL; Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV.
  • Martin KH; Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV; Department of Neurobiology and Anatomy, West Virginia University School of Medicine, M
  • Simpkins JW; Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV; Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, Morgantown, WV; Center for Neuroscience, West Virginia University School of Medicine, Morgantown,
  • Gibson LF; Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV; Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Science
Exp Hematol ; 44(1): 50-9.e1-2, 2016 Jan.
Article em En | MEDLINE | ID: mdl-26407636
Acute lymphoblastic leukemia (ALL) treatment regimens have dramatically improved the survival of ALL patients. However, chemoresistant minimal residual disease that persists following cessation of therapy contributes to aggressive relapse. The bone marrow microenvironment (BMM) is an established "site of sanctuary" for ALL, as well as myeloid-lineage hematopoietic disease, with signals in this unique anatomic location contributing to drug resistance. Several models have been developed to recapitulate the interactions between the BMM and ALL cells. However, many in vitro models fail to accurately reflect the level of protection afforded to the most resistant subset of leukemic cells during coculture with BMM elements. Preclinical in vivo models have advantages, but can be costly, and are often not fully informed by optimal in vitro studies. We describe an innovative extension of 2-D coculture wherein ALL cells uniquely interact with bone marrow-derived stromal cells. Tumor cells in this model bury beneath primary human bone marrow-derived stromal cells or osteoblasts, termed "phase dim" ALL, and exhibit a unique phenotype characterized by altered metabolism, distinct protein expression profiles, increased quiescence, and pronounced chemotherapy resistance. Investigation focused on the phase dim subpopulation may more efficiently inform preclinical design and investigation of the minimal residual disease and relapse that arise from BMM-supported leukemic tumor cells.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Medula Óssea / Leucemia-Linfoma Linfoblástico de Células Precursoras / Microambiente Tumoral Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Medula Óssea / Leucemia-Linfoma Linfoblástico de Células Precursoras / Microambiente Tumoral Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article