Your browser doesn't support javascript.
loading
Nanoscale transport of charge-transfer states in organic donor-acceptor blends.
Deotare, P B; Chang, W; Hontz, E; Congreve, D N; Shi, L; Reusswig, P D; Modtland, B; Bahlke, M E; Lee, C K; Willard, A P; Bulovic, V; Van Voorhis, T; Baldo, M A.
Afiliação
  • Deotare PB; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Chang W; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Hontz E; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Congreve DN; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Shi L; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Reusswig PD; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Modtland B; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Bahlke ME; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Lee CK; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Willard AP; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Bulovic V; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Van Voorhis T; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Baldo MA; Center for Excitonics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Nat Mater ; 14(11): 1130-4, 2015 Nov.
Article em En | MEDLINE | ID: mdl-26413986
Charge-transfer (CT) states, bound combinations of an electron and a hole on separate molecules, play a crucial role in organic optoelectronic devices. We report direct nanoscale imaging of the transport of long-lived CT states in molecular organic donor-acceptor blends, which demonstrates that the bound electron-hole pairs that form the CT states move geminately over distances of 5-10 nm, driven by energetic disorder and diffusion to lower energy sites. Magnetic field dependence reveals a fluctuating exchange splitting, indicative of a variation in electron-hole spacing during diffusion. The results suggest that the electron-hole pair of the CT state undergoes a stretching transport mechanism analogous to an 'inchworm' motion, in contrast to conventional transport of Frenkel excitons. Given the short exciton lifetimes characteristic of bulk heterojunction organic solar cells, this work confirms the potential importance of CT state transport, suggesting that CT states are likely to diffuse farther than Frenkel excitons in many donor-acceptor blends.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article