Your browser doesn't support javascript.
loading
Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
Feaster, Tromondae K; Cadar, Adrian G; Wang, Lili; Williams, Charles H; Chun, Young Wook; Hempel, Jonathan E; Bloodworth, Nathaniel; Merryman, W David; Lim, Chee Chew; Wu, Joseph C; Knollmann, Björn C; Hong, Charles C.
Afiliação
  • Feaster TK; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Cadar AG; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Wang L; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Williams CH; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Chun YW; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Hempel JE; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Bloodworth N; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Merryman WD; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Lim CC; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Wu JC; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Knollmann BC; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
  • Hong CC; From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Bi
Circ Res ; 117(12): 995-1000, 2015 Dec 04.
Article em En | MEDLINE | ID: mdl-26429802
ABSTRACT
RATIONALE The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery.

OBJECTIVE:

To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. METHODS AND

RESULTS:

Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 160 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa).

CONCLUSIONS:

The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Miócitos Cardíacos / Células-Tronco Pluripotentes Induzidas Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Miócitos Cardíacos / Células-Tronco Pluripotentes Induzidas Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article