Your browser doesn't support javascript.
loading
Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.
Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J.
Afiliação
  • Siembab VC; Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435.
  • Gomez-Perez L; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, 30322.
  • Rotterman TM; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, 30322.
  • Shneider NA; Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, 10032.
  • Alvarez FJ; Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435.
J Comp Neurol ; 524(9): 1892-919, 2016 Jun 15.
Article em En | MEDLINE | ID: mdl-26660356
Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Vias Aferentes / Regulação da Expressão Gênica no Desenvolvimento / Células de Renshaw / Neurônios Motores Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Vias Aferentes / Regulação da Expressão Gênica no Desenvolvimento / Células de Renshaw / Neurônios Motores Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article