Your browser doesn't support javascript.
loading
A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers.
Prada, Ilaria; Amin, Ladan; Furlan, Roberto; Legname, Giuseppe; Verderio, Claudia; Cojoc, Dan.
Afiliação
  • Prada I; CNR Institute of Neuroscience, Milan, Italy.
  • Amin L; Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
  • Furlan R; Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy.
  • Legname G; Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
  • Verderio C; CNR Institute of Neuroscience, Milan, Italy.
  • Cojoc D; IRCCS Humanitas, Rozzano, Italy.
Biotechniques ; 60(1): 35-41, 2016 Jan.
Article em En | MEDLINE | ID: mdl-26757810
ABSTRACT
Extracellular vesicles (EVs) are spherical membrane structures released by most cells. These highly conserved mediators of intercellular communication carry proteins, lipids, and nucleic acids, and transfer these cellular components between cells by different mechanisms, such as endocytosis, macropinocytosis, or fusion. However, the temporal and spatial dynamics of vesicle-cell interactions still remain largely unexplored. Here we used optical tweezers to drive single EVs produced by microglial cells onto the surface of astrocytes or microglia in primary culture. By visualizing single EV-cell contacts, we observed that microglial vesicles displayed different motilities on the surface of astrocytes compared with microglia. After contact, EVs positioned on astrocytes displayed some minor oscillatory motion around the point of adhesion, while vesicles dragged to microglia displayed quite regular directional movement on the plasma membrane. Both the adhesion and motion of vesicles on glial cells were strongly reduced by cloaking phosphatidylserine (PS) residues, which are externalized on the vesicle membrane and act as determinants for vesicle recognition by target cells. These data identify optical manipulation as a powerful tool to monitor in vitro vesicle-cell dynamics with high temporal and spatial resolution and to determine in a quantitative manner the contribution of surface receptors/extracellular protein ligands to the contact.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adesão Celular / Pinças Ópticas / Vesículas Extracelulares Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adesão Celular / Pinças Ópticas / Vesículas Extracelulares Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article