Your browser doesn't support javascript.
loading
Maternal Immune Activation Disrupts Dopamine System in the Offspring.
Luchicchi, Antonio; Lecca, Salvatore; Melis, Miriam; De Felice, Marta; Cadeddu, Francesca; Frau, Roberto; Muntoni, Anna Lisa; Fadda, Paola; Devoto, Paola; Pistis, Marco.
Afiliação
  • Luchicchi A; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • Lecca S; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • Melis M; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • De Felice M; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • Cadeddu F; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • Frau R; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • Muntoni AL; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • Fadda P; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • Devoto P; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
  • Pistis M; Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy (Drs Luchicchi, Lecca, Melis, Ms De Felice, Drs Cadeddu, Frau, Fadda, Devoto, and Pistis); Neuroscience Institute, National Research Council of Italy, Section of Cagliari,
Article em En | MEDLINE | ID: mdl-26819283
ABSTRACT

BACKGROUND:

In utero exposure to maternal viral infections is associated with a higher incidence of psychiatric disorders with a supposed neurodevelopmental origin, including schizophrenia. Hence, immune response factors exert a negative impact on brain maturation that predisposes the offspring to the emergence of pathological phenotypes later in life. Although ventral tegmental area dopamine neurons and their target regions play essential roles in the pathophysiology of psychoses, it remains to be fully elucidated how dopamine activity and functionality are disrupted in maternal immune activation models of schizophrenia.

METHODS:

Here, we used an immune-mediated neurodevelopmental disruption model based on prenatal administration of the polyriboinosinic-polyribocytidilic acid in rats, which mimics a viral infection and recapitulates behavioral abnormalities relevant to psychiatric disorders in the offspring. Extracellular dopamine levels were measured by brain microdialysis in both the nucleus accumbens shell and the medial prefrontal cortex, whereas dopamine neurons in ventral tegmental area were studied by in vivo electrophysiology.

RESULTS:

Polyriboinosinic-polyribocytidilic acid-treated animals, at adulthood, displayed deficits in sensorimotor gating, memory, and social interaction and increased baseline extracellular dopamine levels in the nucleus accumbens, but not in the prefrontal cortex. In polyriboinosinic-polyribocytidilic acid rats, dopamine neurons showed reduced spontaneously firing rate and population activity.

CONCLUSIONS:

These results confirm that maternal immune activation severely impairs dopamine system and that the polyriboinosinic-polyribocytidilic acid model can be considered a proper animal model of a psychiatric condition that fulfills a multidimensional set of validity criteria predictive of a human pathology.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Efeitos Tardios da Exposição Pré-Natal / Viroses / Dopamina / Neurônios Dopaminérgicos Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Efeitos Tardios da Exposição Pré-Natal / Viroses / Dopamina / Neurônios Dopaminérgicos Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2016 Tipo de documento: Article