Genetic and pharmacological inhibition of vanin-1 activity in animal models of type 2 diabetes.
Sci Rep
; 6: 21906, 2016 Mar 02.
Article
em En
| MEDLINE
| ID: mdl-26932716
Vanins are enzymes that convert pantetheine to pantothenic acid (vitamin B5). Insights into the function of vanins have evolved lately, indicating vanin-1 to play a role in inflammation, oxidative stress and cell migration. Moreover, vanin-1 has recently gained attention as a novel modulator of hepatic glucose and lipid metabolism. In the present study, we investigated the role of vanin-1 in the development of hepatic steatosis and insulin resistance in animal models of obesity and diabetes. In addition, we evaluated the potency of RR6, a novel pharmacological vanin-1 inhibitor, as an anti-diabetic drug. Increased vanin activity was observed in plasma and liver of high fat diet (HFD)-induced obese mice, as well as ZDF-diabetic rats. Ablation of vanin-1 (Vnn1(-/-) mice) mildly improved glucose tolerance and insulin sensitivity in HFD-fed mice, but had no effects on body weight, hepatic steatosis or circulating lipid levels. Oral administration of RR6 for 8 days completely inhibited plasma vanin activity, but did not affect hepatic glucose production, insulin sensitivity or hepatic steatosis in ZDF-diabetes rats. In conclusion, absence of vanin-1 activity improves insulin sensitivity in HFD-fed animals, yet short-term inhibition of vanin activity may have limited value as an anti-diabetic strategy.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Diabetes Mellitus Experimental
/
Diabetes Mellitus Tipo 2
/
Inibidores Enzimáticos
/
Amidoidrolases
Limite:
Animals
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article