Your browser doesn't support javascript.
loading
Phosphate Treatment Strongly Inhibits New Arbuscule Development But Not the Maintenance of Arbuscule in Mycorrhizal Rice Roots.
Kobae, Yoshihiro; Ohmori, Yoshihiro; Saito, Chieko; Yano, Koji; Ohtomo, Ryo; Fujiwara, Toru.
Afiliação
  • Kobae Y; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (Y.K., Y.O., K.Y., T.F.); Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
  • Ohmori Y; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (Y.K., Y.O., K.Y., T.F.); Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
  • Saito C; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (Y.K., Y.O., K.Y., T.F.); Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
  • Yano K; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (Y.K., Y.O., K.Y., T.F.); Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
  • Ohtomo R; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (Y.K., Y.O., K.Y., T.F.); Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
  • Fujiwara T; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (Y.K., Y.O., K.Y., T.F.); Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Plant Physiol ; 171(1): 566-79, 2016 05.
Article em En | MEDLINE | ID: mdl-26979330
ABSTRACT
Phosphorus (P) is a crucial nutrient for plant growth, but its availability to roots is limited in soil. Arbuscular mycorrhizal (AM) symbiosis is a promising strategy for improving plant P acquisition. However, P fertilizer reduces fungal colonization (P inhibition) and compromises mycorrhizal P uptake, warranting studies on the mechanistic basis of P inhibition. In this study, early morphological changes in P inhibition were identified in rice (Oryza sativa) using fungal cell wall staining and live-cell imaging of plant membranes that were associated with arbuscule life cycles. Arbuscule density decreased, and aberrant hyphal branching was observed in roots at 5 h after P treatment. Although new arbuscule development was severely inhibited, preformed arbuscules remained intact and longevity remained constant. P inhibition was accelerated in the rice pt11-1 mutant, which lacks P uptake from arbuscule branches, suggesting that mature arbuscules are stabilized by the symbiotic P transporter under high P condition. Moreover, P treatment led to increases in the number of vesicles, in which lipid droplets accumulated and then decreased within a few days. The development of new arbuscules resumed within by 2 d. Our data established that P strongly and temporarily inhibits new arbuscule development, but not intraradical accommodation of AM fungi.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Oryza / Raízes de Plantas / Micorrizas Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Oryza / Raízes de Plantas / Micorrizas Idioma: En Ano de publicação: 2016 Tipo de documento: Article