Your browser doesn't support javascript.
loading
Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.
McFarlane, Laura; Altringham, John D; Askew, Graham N.
Afiliação
  • McFarlane L; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
  • Altringham JD; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
  • Askew GN; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK g.n.askew@leeds.ac.uk.
J Exp Biol ; 219(Pt 9): 1369-77, 2016 05 01.
Article em En | MEDLINE | ID: mdl-26994175
Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Asas de Animais / Passeriformes / Voo Animal Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Asas de Animais / Passeriformes / Voo Animal Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article