Your browser doesn't support javascript.
loading
Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2.
Zhuang, Huaqiang; Zhang, Yingguang; Chu, Zhenwei; Long, Jinlin; An, Xiaohan; Zhang, Hongwen; Lin, Huaxiang; Zhang, Zizhong; Wang, Xuxu.
Afiliação
  • Zhuang H; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China. jllong@fzu.edu.cn xwang@fzu.edu.cn.
Phys Chem Chem Phys ; 18(14): 9636-44, 2016 Apr 14.
Article em En | MEDLINE | ID: mdl-26996319
ABSTRACT
This paper mainly focuses on the synergistic effect of Sn and N dopants to enhance the photocatalytic performance of anatase TiO2 under visible light or simulated solar light irradiation. The Sn and N co-doped TiO2 (SNT-x) photocatalysts were successfully prepared by the facile sol-gel method and the post-nitridation route in the temperature range of 400-550 °C. All the as-prepared samples were characterized in detail by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, X-ray photoelectron and electron spin resonance spectroscopy and photoelectrochemical measurements. The characterization results reveal that the co-incorporation of Sn and N atoms remarkably modifies the electronic structure of TiO2, which gives rise to a prominent separation of photogenerated charge carriers and more efficient interfacial charge-transfer reactions in a photocatalytic process. The enhanced photocatalytic activity is attributed to the intensified active oxygen species including hydroxyl radicals (˙OH) and superoxide anion radicals (O2˙(-)) for degradation of organic pollutants. And the result of photocatalytic hydrogen production further confirms the existence of the synergistic effect in the SNT-x samples, because they exhibit higher photocatalytic activity than the sum of N/TiO2 and Sn/TiO2. This work provides a paradigm to consolidate the understanding of the synergistic effect of metal and non-metal co-doped TiO2 in domains of photocatalysis and photoelectrochemistry.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article