Your browser doesn't support javascript.
loading
Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses.
Sharp, Jared D; Singh, Atul K; Park, Sang Tae; Lyubetskaya, Anna; Peterson, Matthew W; Gomes, Antonio L C; Potluri, Lakshmi-Prasad; Raman, Sahadevan; Galagan, James E; Husson, Robert N.
Afiliação
  • Sharp JD; Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States of America.
  • Singh AK; Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States of America.
  • Park ST; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States of America.
  • Lyubetskaya A; Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States of America.
  • Peterson MW; Department of Microbiology, Boston University, Boston, Massachusetts 02215, United States of America.
  • Gomes AL; Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States of America.
  • Potluri LP; Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States of America.
  • Raman S; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States of America.
  • Galagan JE; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States of America.
  • Husson RN; Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States of America.
PLoS One ; 11(3): e0152145, 2016.
Article em En | MEDLINE | ID: mdl-27003599
ABSTRACT
Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator sigma / Estresse Fisiológico / Proteínas de Bactérias / Transcrição Gênica / Regulon / Mycobacterium tuberculosis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator sigma / Estresse Fisiológico / Proteínas de Bactérias / Transcrição Gênica / Regulon / Mycobacterium tuberculosis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article