Your browser doesn't support javascript.
loading
Variability and bias assessment in breast ADC measurement across multiple systems.
Keenan, Kathryn E; Peskin, Adele P; Wilmes, Lisa J; Aliu, Sheye O; Jones, Ella F; Li, Wen; Kornak, John; Newitt, David C; Hylton, Nola M.
Afiliação
  • Keenan KE; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA. kathryn.keenan@nist.gov.
  • Peskin AP; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA.
  • Wilmes LJ; Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
  • Aliu SO; Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
  • Jones EF; Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
  • Li W; Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
  • Kornak J; Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA.
  • Newitt DC; Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
  • Hylton NM; Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
J Magn Reson Imaging ; 44(4): 846-55, 2016 10.
Article em En | MEDLINE | ID: mdl-27008431
ABSTRACT

PURPOSE:

To assess the ability of a recent, anatomically designed breast phantom incorporating T1 and diffusion elements to serve as a quality control device for quantitative comparison of apparent diffusion coefficient (ADC) measurements calculated from diffusion-weighted MRI (DWI) within and across MRI systems. MATERIALS AND

METHODS:

A bilateral breast phantom incorporating multiple T1 and diffusion tissue mimics and a geometric distortion array was imaged with DWI on 1.5 Tesla (T) and 3.0T scanners from two different manufacturers, using three different breast coils (three configurations total). Multiple measurements were acquired to assess the bias and variability of different diffusion weighted single-shot echo-planar imaging sequences on the scanner-coil systems.

RESULTS:

The repeatability of ADC measurements was mixed the standard deviation relative to baseline across scanner-coil-sequences ranged from low variability (0.47, 95% confidence interval [CI] 0.22-1.00) to high variability (1.69, 95% CI 0.17-17.26), depending on material, with the lowest and highest variability from the same scanner-coil-sequence. Assessment of image distortion showed that right/left measurements of the geometric distortion array were 1 to 16% larger on the left coil side compared with the right coil side independent of scanner-coil systems, diffusion weighting, and phase-encoding direction.

CONCLUSION:

This breast phantom can be used to measure scanner-coil-sequence bias and variability for DWI. When establishing a multisystem study, this breast phantom may be used to minimize protocol differences (e.g., due to available sequences or shimming technique), to correct for bias that cannot be minimized, and to weigh results from each system depending on respective variability. J. Magn. Reson. Imaging 2016. J. MAGN. RESON. IMAGING 2016;44846-855.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Artefatos / Imagens de Fantasmas / Análise de Falha de Equipamento Tipo de estudo: Diagnostic_studies / Evaluation_studies Limite: Female / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Artefatos / Imagens de Fantasmas / Análise de Falha de Equipamento Tipo de estudo: Diagnostic_studies / Evaluation_studies Limite: Female / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article