Your browser doesn't support javascript.
loading
Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification.
Spilka, Jiri; Frecon, Jordan; Leonarduzzi, Roberto; Pustelnik, Nelly; Abry, Patrice; Doret, Muriel.
Afiliação
  • Spilka J; CNRS, Laboratoire de Physique, Claude Bernard University Lyon 1, Lyon, France.
  • Frecon J; CNRS, Laboratoire de Physique, Claude Bernard University Lyon 1, Lyon, France.
  • Leonarduzzi R; CNRS, Laboratoire de Physique, Claude Bernard University Lyon 1, Lyon, France.
  • Pustelnik N; CNRS, Laboratoire de Physique, Claude Bernard University Lyon 1, Lyon, France.
  • Abry P; CNRS, Laboratoire de Physique, Claude Bernard University Lyon 1, Lyon, France.
  • Doret M; Femme-Mère-Enfant Hospital, Lyon, France.
IEEE J Biomed Health Inform ; 21(3): 664-671, 2017 05.
Article em En | MEDLINE | ID: mdl-27046884
Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level ß0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Frequência Cardíaca Fetal / Processamento de Sinais Assistido por Computador / Máquina de Vetores de Suporte Tipo de estudo: Prognostic_studies / Screening_studies Limite: Female / Humans / Pregnancy Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Frequência Cardíaca Fetal / Processamento de Sinais Assistido por Computador / Máquina de Vetores de Suporte Tipo de estudo: Prognostic_studies / Screening_studies Limite: Female / Humans / Pregnancy Idioma: En Ano de publicação: 2017 Tipo de documento: Article