Your browser doesn't support javascript.
loading
The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo.
Flores-Sierra, José; Arredondo-Guerrero, Martín; Cervantes-Paz, Braulio; Rodríguez-Ríos, Dalia; Alvarado-Caudillo, Yolanda; Nielsen, Finn C; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio; Lund, Gertrud.
Afiliação
  • Flores-Sierra J; Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico.
  • Arredondo-Guerrero M; Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico.
  • Cervantes-Paz B; Tecnológico de Monterrey, Leon Campus, Leon, Gto., Mexico.
  • Rodríguez-Ríos D; Department of Genetic Engineering, CINVESTAV Irapuato Unit, 36821, Irapuato, Gto., Mexico.
  • Alvarado-Caudillo Y; Department of Genetic Engineering, CINVESTAV Irapuato Unit, 36821, Irapuato, Gto., Mexico.
  • Nielsen FC; Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico.
  • Wrobel K; Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
  • Wrobel K; Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato, Gto., Mexico.
  • Zaina S; Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato, Gto., Mexico.
  • Lund G; Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico.
Lipids Health Dis ; 15: 75, 2016 Apr 12.
Article em En | MEDLINE | ID: mdl-27068706
BACKGROUND: The deleterious effects of dietary trans fatty acids (tFAs) on human health are well documented. Although significantly reduced or banned in various countries, tFAs may trigger long-term responses that would represent a valid human health concern, particularly if tFAs alter the epigenome. METHODS: Based on these considerations, we asked whether the tFA elaidic acid (EA; tC18:1) has any effects on global DNA methylation and the transcriptome in cultured human THP-1 monocytes, and whether the progeny of EA-supplemented dams during either pregnancy or lactation in mice (n = 20 per group) show any epigenetic change after exposure. RESULTS: EA induced a biphasic effect on global DNA methylation in THP-1 cells, i.e. hypermethylation in the 1-50 µM concentration range, followed by hypomethylation up to the 200 µM dose. On the other hand, the cis isomer oleic acid (OA), a fatty acid with documented beneficial effects on human health, exerted a distinct response, i.e. its effects were weaker and only partially overlapping with EA's. The maximal differential response between EA and OA was observed at the 50 µM dose. Array expression data revealed that EA induced a pro-inflammatory and adipogenic transcriptional profile compared with OA, although with modest effects on selected (n = 9) gene promoter methylation. In mice, maternal EA supplementation in utero or via the breastmilk induced global adipose tissue DNA hypermethylation in the progeny, that was detectable postnatally at the age of 3 months. CONCLUSION: We document that global DNA hypermethylation is a specific and consistent response to EA in cell culture and in mice, and that EA may exert long-term effects on the epigenome following maternal exposure.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Ácido Oleico / Metilação de DNA Limite: Animals / Female / Humans / Male / Pregnancy Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Ácido Oleico / Metilação de DNA Limite: Animals / Female / Humans / Male / Pregnancy Idioma: En Ano de publicação: 2016 Tipo de documento: Article