Your browser doesn't support javascript.
loading
TAML/H2O2 Oxidative Degradation of Metaldehyde: Pursuing Better Water Treatment for the Most Persistent Pollutants.
Tang, Liang L; DeNardo, Matthew A; Gayathri, Chakicherla; Gil, Roberto R; Kanda, Rakesh; Collins, Terrence J.
Afiliação
  • Tang LL; Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
  • DeNardo MA; Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
  • Gayathri C; Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
  • Gil RR; Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
  • Kanda R; Institute for the Environment, Brunel University , Halsbury Building (130), Kingston Lane, Uxbridge, Middlesex, UB8 3PH, United Kingdom.
  • Collins TJ; Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
Environ Sci Technol ; 50(10): 5261-8, 2016 05 17.
Article em En | MEDLINE | ID: mdl-27088657
ABSTRACT
The extremely persistent molluscicide, metaldehyde, widely used on farms and gardens, is often detected in drinking water sources of various countries at concentrations of regulatory concern. Metaldehyde contamination restricts treatment options. Conventional technologies for remediating dilute organics in drinking water, activated carbon, and ozone, are insufficiently effective against metaldehyde. Some treatment plants have resorted to effective, but more costly UV/H2O2. Here we have examined if TAML/H2O2 can decompose metaldehyde under laboratory conditions to guide development of a better real world option. TAML/H2O2 slowly degrades metaldehyde to acetaldehyde and acetic acid. Nuclear magnetic resonance spectroscopy ((1)H NMR) was used to monitor the degradation-the technique requires a high metaldehyde concentration (60 ppm). Within the pH range of 6.5-9, the reaction rate is greatest at pH 7. Under optimum conditions, one aliquot of TAML 1a (400 nM) catalyzed 5% degradation over 10 h with a turnover number of 40. Five sequential TAML aliquots (2 µM overall) effected a 31% removal over 60 h. TAML/H2O2 degraded metaldehyde steadily over many hours, highlighting an important long-service property. The observation of metaldehyde decomposition under mild conditions provides a further indication that TAML catalysis holds promise for advancing water treatment. These results have turned our attention to more aggressive TAML activators in development, which we expect will advance the observed technical performance.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Purificação da Água / Peróxido de Hidrogênio Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Purificação da Água / Peróxido de Hidrogênio Idioma: En Ano de publicação: 2016 Tipo de documento: Article