Your browser doesn't support javascript.
loading
High-Quality Hollow Closed-Pore Silica Antireflection Coatings Based on Styrene-Acrylate Emulsion @ Organic-Inorganic Silica Precursor.
Guo, Zhaolong; Zhao, Haixin; Zhao, Wei; Wang, Tao; Kong, Depeng; Chen, Taojing; Zhang, Xiaoyan.
Afiliação
  • Guo Z; State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
  • Zhao H; University of Chinese Academy of Sciences , Beijing 100049, China.
  • Zhao W; State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
  • Wang T; State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
  • Kong D; State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
  • Chen T; State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
  • Zhang X; State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
ACS Appl Mater Interfaces ; 8(18): 11796-805, 2016 05 11.
Article em En | MEDLINE | ID: mdl-27104837
ABSTRACT
Making use of a facile and low-cost way for the preparation of a hierarchically organized novel hollow closed-pore silica antireflective coating (CHAR) with tailored optical properties and a mechanical reliability is of great interest in the field of solar photovoltaic technology. The process mainly contains two aspects (1) a styrene-acrylate emulsion @ organic-inorganic silica precursor (SA@OISP) core/shell hierarchical nanostructure, consisting of a sacrificial styrene-acrylate (SA) primary template, was fabricated using a sol-gel method; (2) the self-assembly of the nanostructures leads to SA@OISP nanospheres forming the high-quality hollow closed-pore silica antireflection coating (CHAR) by a dip-coating process and a subsequent calcination treatment. The resulting SA@OISP nanospheres have a mean diameter of 65.2 nm and contained a SA soft core with a mean diameter of approximately 54.8 nm and an organic-inorganic silica precursor (OISP) shell with a thickness of approximately 6-10 nm. Furthermore, the prepared CHAR film exhibited a high transmittance and good ruggedness. An average transmittance (TAV) of 97.64% was obtained, and the value is close to the ideal single-layered antireflection coating (98.09%) over a broad range of wavelengths (from 380 to 1100 nm). The CHAR film showed a stable TAV, with attenuation values of less than 0.8% and 0.43% after the abrasion test and the damp heat test, respectively. The conversion efficiency of the CHAR coating cover solar modules tends to be increased by 3.75%. The promising results obtained in this study suggest that the CHAR film was considered as an essential component of the solar module and were expected to provide additional solar energy harvest under extreme outdoor climates.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article