Your browser doesn't support javascript.
loading
Thermodynamically Guided Synthesis of Mixed-Linker Zr-MOFs with Enhanced Tunability.
Yuan, Shuai; Qin, Jun-Sheng; Zou, Lanfang; Chen, Ying-Pin; Wang, Xuan; Zhang, Qiang; Zhou, Hong-Cai.
Afiliação
  • Yuan S; Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.
  • Qin JS; Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.
  • Zou L; Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.
  • Chen YP; Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.
  • Wang X; Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77842, United States.
  • Zhang Q; Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.
  • Zhou HC; Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.
J Am Chem Soc ; 138(20): 6636-42, 2016 05 25.
Article em En | MEDLINE | ID: mdl-27151517
ABSTRACT
Guided by thermodynamics, we have synthesized two mixed-linker zirconium-based metal-organic frameworks (Zr-MOFs), namely, PCN-133 and PCN-134. Both of them possess a layer-pillar structure, in which the connection between Zr6 clusters and primary BTB linkers form a (3,6)-connected kdg layer that is further extended into 3D frameworks by auxiliary DCDPS/TCPP linkers (BTB = benzene tribenzoate, DCDPS = 4,4'-dicarboxydiphenyl sulfone, TCPP = tetrakis(4-carboxyphenyl)porphyrin). PCN-134 demonstrates high porosity (N2 uptake of 717 cm(3)·g(-1) and BET surface area of 1946 cm(2)·g(-1)) and excellent chemical stability in aqueous solutions with pH values ranging from 0 to 13. More importantly, PCN-134 tolerates the partial absence of auxiliary linkers leading to structural defects during the assembly process while preserving its framework integrity. Furthermore, the defect density can be systematically controlled by tuning the occupancy of the auxiliary linker, which in turn affects the MOF properties. For instance, the dichromate uptake of PCN-134 is tuned by adjusting the BTB/TCPP ratios, which gives rise to an efficient dichromate absorbent when the TCPP molar ratio in linkers is set as 22%. In addition, the photocatalytic reduction of Cr(VI) in aqueous solution was also performed by PCN-134-22%TCPP which exhibits excellent catalytic activity. This work not only opens up a new synthetic route toward mixed-linker MOFs, but also provides tunable control of MOF defects and, in turn, the properties.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article