Your browser doesn't support javascript.
loading
Berberine Decreased Inducible Nitric Oxide Synthase mRNA Stability through Negative Regulation of Human Antigen R in Lipopolysaccharide-Induced Macrophages.
Shin, Ji-Sun; Choi, Hye-Eun; Seo, SeungHwan; Choi, Jung-Hye; Baek, Nam-In; Lee, Kyung-Tae.
Afiliação
  • Shin JS; Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Gra
  • Choi HE; Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Gra
  • Seo S; Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Gra
  • Choi JH; Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Gra
  • Baek NI; Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Gra
  • Lee KT; Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Gra
J Pharmacol Exp Ther ; 358(1): 3-13, 2016 07.
Article em En | MEDLINE | ID: mdl-27189969
ABSTRACT
Berberine, a major isoquinoline alkaloid found in medicinal herbs, has been reported to possess anti-inflammatory effects; however, the underlying mechanisms responsible for its actions are poorly understood. In the present study, we investigated the inhibitory effects of berberine and the molecular mechanisms involved in lipopolysaccharide (LPS)-treated RAW 264.7 and THP-1 macrophages and its effects in LPS-induced septic shock in mice. In both macrophage cell types, berberine inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) protein expression, but it had no effect on iNOS mRNA transcription. Suppression of LPS-induced iNOS protein expression by berberine occurred via a human antigen R (HuR)-mediated reduction of iNOS mRNA stability. Molecular data revealed that the suppression on the LPS-induced HuR binding to iNOS mRNA by berberine was accompanied by a reduction in nucleocytoplasmic HuR shuttling. Pretreatment with berberine reduced LPS-induced iNOS protein expression and the cytoplasmic translocation of HuR in liver tissues and increased the survival rate of mice with LPS-induced endotoxemia. These results show that the suppression of iNOS protein expression by berberine under LPS-induced inflammatory conditions is associated with a reduction in iNOS mRNA stability resulting from inhibition of the cytoplasmic translocation of HuR.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Berberina / Estabilidade de RNA / Óxido Nítrico Sintase Tipo II / Proteína Semelhante a ELAV 1 / Macrófagos / Anti-Inflamatórios Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Berberina / Estabilidade de RNA / Óxido Nítrico Sintase Tipo II / Proteína Semelhante a ELAV 1 / Macrófagos / Anti-Inflamatórios Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2016 Tipo de documento: Article