Your browser doesn't support javascript.
loading
Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants in Unanesthetized Rabbits.
Chung, Yoojin; Hancock, Kenneth E; Delgutte, Bertrand.
Afiliação
  • Chung Y; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114 and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts 02115 yoojin.chung@gmail.com.
  • Hancock KE; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114 and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts 02115.
  • Delgutte B; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114 and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts 02115.
J Neurosci ; 36(20): 5520-31, 2016 05 18.
Article em En | MEDLINE | ID: mdl-27194332
UNLABELLED: Although bilateral cochlear implants (CIs) provide improvements in sound localization and speech perception in noise over unilateral CIs, bilateral CI users' sensitivity to interaural time differences (ITDs) is still poorer than normal. In particular, ITD sensitivity of most CI users degrades with increasing stimulation rate and is lacking at the high carrier pulse rates used in CI processors to deliver speech information. To gain a better understanding of the neural basis for this degradation, we characterized ITD tuning of single neurons in the inferior colliculus (IC) for pulse train stimuli in an unanesthetized rabbit model of bilateral CIs. Approximately 73% of IC neurons showed significant ITD sensitivity in their overall firing rates. On average, ITD sensitivity was best for pulse rates near 80-160 pulses per second (pps) and degraded for both lower and higher pulse rates. The degradation in ITD sensitivity at low pulse rates was caused by strong, unsynchronized background activity that masked stimulus-driven responses in many neurons. Selecting synchronized responses by temporal windowing revealed ITD sensitivity in these neurons. With temporal windowing, both the fraction of ITD-sensitive neurons and the degree of ITD sensitivity decreased monotonically with increasing pulse rate. To compare neural ITD sensitivity to human performance in ITD discrimination, neural just-noticeable differences (JNDs) in ITD were computed using signal detection theory. Using temporal windowing at lower pulse rates, and overall firing rate at higher pulse rates, neural ITD JNDs were within the range of perceptual JNDs in human CI users over a wide range of pulse rates. SIGNIFICANCE STATEMENT: Many profoundly deaf people wearing cochlear implants (CIs) still face challenges in everyday situations, such as understanding conversations in noise. Even with CIs in both ears, they have difficulty making full use of subtle differences in the sounds reaching the two ears [interaural time difference (ITD)] to identify where the sound is coming from. This problem is especially acute at the high stimulation rates used in clinical CI processors. This study provides a better understanding of ITD processing with bilateral CIs and shows a parallel between human performance in ITD discrimination and neural responses in the auditory midbrain. The present study is the first report on binaural properties of auditory neurons with CIs in unanesthetized animals.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Percepção Auditiva / Implantes Cocleares / Estado de Consciência / Potenciais Evocados Auditivos Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Percepção Auditiva / Implantes Cocleares / Estado de Consciência / Potenciais Evocados Auditivos Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article