Your browser doesn't support javascript.
loading
Up-regulation of miR-31 in human atrial fibrillation begets the arrhythmia by depleting dystrophin and neuronal nitric oxide synthase.
Reilly, Svetlana N; Liu, Xing; Carnicer, Ricardo; Recalde, Alice; Muszkiewicz, Anna; Jayaram, Raja; Carena, Maria Cristina; Wijesurendra, Rohan; Stefanini, Matilde; Surdo, Nicoletta C; Lomas, Oliver; Ratnatunga, Chandana; Sayeed, Rana; Krasopoulos, George; Rajakumar, Timothy; Bueno-Orovio, Alfonso; Verheule, Sander; Fulga, Tudor A; Rodriguez, Blanca; Schotten, Ulrich; Casadei, Barbara.
Afiliação
  • Reilly SN; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Liu X; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Carnicer R; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Recalde A; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Muszkiewicz A; Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK.
  • Jayaram R; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Carena MC; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Wijesurendra R; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Stefanini M; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Surdo NC; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Lomas O; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Ratnatunga C; Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Sayeed R; Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Krasopoulos G; Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Rajakumar T; Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
  • Bueno-Orovio A; Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK.
  • Verheule S; Department of Physiology, University of Maastricht, 6211 LK Maastricht, Netherlands.
  • Fulga TA; Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
  • Rodriguez B; Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK.
  • Schotten U; Department of Physiology, University of Maastricht, 6211 LK Maastricht, Netherlands.
  • Casadei B; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
Sci Transl Med ; 8(340): 340ra74, 2016 05 25.
Article em En | MEDLINE | ID: mdl-27225184
ABSTRACT
Atrial fibrillation (AF) is a growing public health burden, and its treatment remains a challenge. AF leads to electrical remodeling of the atria, which in turn promotes AF maintenance and resistance to treatment. Although remodeling has long been a therapeutic target in AF, its causes remain poorly understood. We show that atrial-specific up-regulation of microRNA-31 (miR-31) in goat and human AF depletes neuronal nitric oxide synthase (nNOS) by accelerating mRNA decay and alters nNOS subcellular localization by repressing dystrophin translation. By shortening action potential duration and abolishing rate-dependent adaptation of the action potential duration, miR-31 overexpression and/or disruption of nNOS signaling recapitulates features of AF-induced remodeling and significantly increases AF inducibility in mice in vivo. By contrast, silencing miR-31 in atrial myocytes from patients with AF restores dystrophin and nNOS and normalizes action potential duration and its rate dependency. These findings identify atrial-specific up-regulation of miR-31 in human AF as a key mechanism causing atrial dystrophin and nNOS depletion, which in turn contributes to the atrial phenotype begetting this arrhythmia. miR-31 may therefore represent a potential therapeutic target in AF.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arritmias Cardíacas / Fibrilação Atrial / Distrofina / MicroRNAs / Óxido Nítrico Sintase Tipo I / Átrios do Coração Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arritmias Cardíacas / Fibrilação Atrial / Distrofina / MicroRNAs / Óxido Nítrico Sintase Tipo I / Átrios do Coração Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article