Data-driven hypothesis weighting increases detection power in genome-scale multiple testing.
Nat Methods
; 13(7): 577-80, 2016 07.
Article
em En
| MEDLINE
| ID: mdl-27240256
Hypothesis weighting improves the power of large-scale multiple testing. We describe independent hypothesis weighting (IHW), a method that assigns weights using covariates independent of the P-values under the null hypothesis but informative of each test's power or prior probability of the null hypothesis (http://www.bioconductor.org/packages/IHW). IHW increases power while controlling the false discovery rate and is a practical approach to discovering associations in genomics, high-throughput biology and other large data sets.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Genoma Humano
/
Interpretação Estatística de Dados
/
Perfilação da Expressão Gênica
/
Genômica
/
Modelos Teóricos
Tipo de estudo:
Diagnostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article