Your browser doesn't support javascript.
loading
The Chemistry of the Noncanonical Cyclic Dinucleotide 2'3'-cGAMP and Its Analogs.
Schwede, Frank; Genieser, Hans-Gottfried; Rentsch, Andreas.
Afiliação
  • Schwede F; BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany. fs@biolog.de.
  • Genieser HG; BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany.
  • Rentsch A; BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany.
Handb Exp Pharmacol ; 238: 359-384, 2017.
Article em En | MEDLINE | ID: mdl-27392950
The cyclic dinucleotides (CDNs) cyclic diguanosine monophosphate (c-diGMP) and cyclic diadenosine monophosphate (c-diAMP) with two canonical 3'→5' internucleotide linkages are ubiquitous second messenger molecules in bacteria, regulating a multitude of physiological processes. Recently the noncanonical CDN cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP) featuring a mixed linkage, which consists of a 2'→5' and a 3'→5' internucleotide bond, has been identified as a signaling molecule in metazoan species in late 2012. 2'3'-cGAMP formation is biocatalyzed by cGAMP synthase (cGAS) upon sensing of cytosolic double-stranded DNA (dsDNA) and functions as an endogenous inducer of innate immunity by directly binding to and activating the adaptor protein stimulator of interferon genes (STING). Thereby 2'3'-cGAMP can stimulate interferon-ß (INF-ß) secretion, a major signaling pathway of host defense, which is independent of toll-like receptor (TLR) activation. Medicinal chemistry of 2'3'-cGAMP and development of corresponding analogs are still in their infancy, and only a handful of structurally related compounds are available to the scientific community. The aim of this chapter is to summarize synthetic approaches to prepare canonical and noncanonical endogenous CDNs including 2'3'-cGAMP. Furthermore, we will describe syntheses of 2'3'-cGAMP analogs bearing modifications, which will facilitate further studies of the emerging biological functions of 2'3'-cGAMP and to identify additional receptor proteins. Finally, we will review latest developments concerning 2'3'-cGAMP analogs with improved hydrolytic stability in cell cultures and in tissues, putatively qualifying for new therapeutic options on the basis of 2'3'-cGAMP signaling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistemas do Segundo Mensageiro / Nucleotídeos Cíclicos Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistemas do Segundo Mensageiro / Nucleotídeos Cíclicos Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article