Your browser doesn't support javascript.
loading
Loss of lipopolysaccharide-binding protein attenuates the development of diet-induced non-alcoholic fatty liver disease in mice.
Jin, Cheng Jun; Engstler, Anna Janina; Ziegenhardt, Doreen; Bischoff, Stephan C; Trautwein, Christian; Bergheim, Ina.
Afiliação
  • Jin CJ; Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.
  • Engstler AJ; Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.
  • Ziegenhardt D; Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.
  • Bischoff SC; Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
  • Trautwein C; Department of Gastroenterology, Metabolic Diseases and Internal Intensive Medicine (Med. Clinic III), University Hospital RWTH Aachen, Aachen, Germany.
  • Bergheim I; Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.
J Gastroenterol Hepatol ; 32(3): 708-715, 2017 Mar.
Article em En | MEDLINE | ID: mdl-27404046
BACKGROUND AND AIM: It has been suggested in several studies that an increased translocation of bacterial lipopolysaccharide (LPS) and, subsequently, an activation of toll-like receptor (TLR)-dependent signaling pathways in the liver may contribute to the development of non-alcoholic fatty liver disease. METHODS: Eight-week-old lipopolysaccharide-binding protein (LBP)-/- and wild-type (WT) mice were pair fed either a liquid diet rich in fat, fructose, and cholesterol (Western-style diet [WSD]) or a control liquid diet for 8 weeks. Parameters of liver injury, markers of TLR-4-dependent signaling pathway, and glucose/lipid metabolism were determined. RESULTS: Despite similar total caloric intake, weight gain, fasting blood glucose levels, and liver-to-bodyweight ratio, indices of liver damage determined by liver histology and transaminases were markedly lower in WSD-fed LBP-/- mice than in WSD-fed WT animals. In line with these findings, number of neutrophils, F4/80 positive cells, and plasminogen activator inhibitor 1 were only found to be significantly increased in livers of WSD-fed WT mice. While mRNA expressions of TLR-4 and myeloid differentiation primary response 88 were similar between WSD-fed groups, concentrations of inducible nitric oxide synthase protein and 4-hydroxynonenal protein adducts were significantly higher in livers of WSD-fed WT mice than in WSD-fed LBP-/- animals. Markers of lipid metabolism, for example, sterol regulatory element-binding protein 1c and fatty acid synthase per se, were significantly lower in livers of LBP-/- mice; however, mRNA expressions did not differ between controls and WSD-fed mice within the respective mouse strain. CONCLUSION: Taken together, our results suggest that LBP is a critical factor in the development of non-alcoholic fatty liver disease in mice.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Fase Aguda / Glicoproteínas de Membrana / Proteínas de Transporte / Lipopolissacarídeos / Hepatopatia Gordurosa não Alcoólica / Fígado Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Fase Aguda / Glicoproteínas de Membrana / Proteínas de Transporte / Lipopolissacarídeos / Hepatopatia Gordurosa não Alcoólica / Fígado Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article