Your browser doesn't support javascript.
loading
Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase.
Sellem, Carole H; di Rago, Jean-Paul; Lasserre, Jean-Paul; Ackerman, Sharon H; Sainsard-Chanet, Annie.
Afiliação
  • Sellem CH; Institute for Integrative Biology of the Cell (I2BC), CEA-CNRS-Université Paris-Sud, Gif sur Yvette, France.
  • di Rago JP; CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.
  • Lasserre JP; Université Victor Segalen-Bordeaux 2, IBGC, UMR 5095, Bordeaux, France.
  • Ackerman SH; CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.
  • Sainsard-Chanet A; Université Victor Segalen-Bordeaux 2, IBGC, UMR 5095, Bordeaux, France.
PLoS Genet ; 12(7): e1006161, 2016 07.
Article em En | MEDLINE | ID: mdl-27442014
Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8-15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Fúngicas / ATPases Mitocondriais Próton-Translocadoras / Podospora / Metabolismo Energético Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Fúngicas / ATPases Mitocondriais Próton-Translocadoras / Podospora / Metabolismo Energético Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article