Your browser doesn't support javascript.
loading
Evaluating Acetate Metabolism for Imaging and Targeting in Multiple Myeloma.
Fontana, Francesca; Ge, Xia; Su, Xinming; Hathi, Deep; Xiang, Jingyu; Cenci, Simone; Civitelli, Roberto; Shoghi, Kooresh I; Akers, Walter J; D'avignon, Andre; Weilbaecher, Katherine N; Shokeen, Monica.
Afiliação
  • Fontana F; Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri.
  • Ge X; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
  • Su X; Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri.
  • Hathi D; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
  • Xiang J; Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri.
  • Cenci S; San Raffaele Scientific Institute (SRSI), Division of Genetics and Cell Biology, and Università Vita-Salute San Raffaele, Milano, Italy.
  • Civitelli R; Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri.
  • Shoghi KI; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
  • Akers WJ; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
  • D'avignon A; Department of Chemistry, Washington University, St. Louis, Missouri.
  • Weilbaecher KN; Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri. mshokeen@wustl.edu kweilbae@wustl.edu.
  • Shokeen M; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri. mshokeen@wustl.edu kweilbae@wustl.edu.
Clin Cancer Res ; 23(2): 416-429, 2017 Jan 15.
Article em En | MEDLINE | ID: mdl-27486177
ABSTRACT

PURPOSE:

We hypothesized that in multiple myeloma cells (MMC), high membrane biosynthesis will induce acetate uptake in vitro and in vivo Here, we studied acetate metabolism and targeting in MMC in vitro and tested the efficacy of 11C-acetate-positron emission tomography (PET) to detect and quantitatively image myeloma treatment response in vivo EXPERIMENTAL

DESIGN:

Acetate fate tracking using 13C-edited-1H NMR (nuclear magnetic resonance) was performed to study in vitro acetate uptake and metabolism in MMC. Effects of pharmacological modulation of acetate transport or acetate incorporation into lipids on MMC cell survival and viability were assessed. Preclinical mouse MM models of subcutaneous and bone tumors were evaluated using 11C-acetate-PET/CT imaging and tissue biodistribution.

RESULTS:

In vitro, NMR showed significant uptake of acetate by MMC and acetate incorporation into intracellular metabolites and membrane lipids. Inhibition of lipid synthesis and acetate transport was toxic to MMC, while sparing resident bone cells or normal B cells. In vivo, 11C-acetate uptake by PET imaging was significantly enhanced in subcutaneous and bone MMC tumors compared with unaffected bone or muscle tissue. Likewise, 11C-acetate uptake was significantly reduced in MM tumors after treatment.

CONCLUSIONS:

Uptake of acetate from the extracellular environment was enhanced in MMC and was critical to cellular viability. 11C-Acetate-PET detected the presence of myeloma cells in vivo, including uptake in intramedullary bone disease. 11C-Acetate-PET also detected response to therapy in vivo Our data suggested that acetate metabolism and incorporation into lipids was crucial to MM cell biology and that 11C-acetate-PET is a promising imaging modality for MM. Clin Cancer Res; 23(2); 416-29. ©2016 AACR.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Ósseas / Metabolismo dos Lipídeos / Acetatos / Mieloma Múltiplo Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Ósseas / Metabolismo dos Lipídeos / Acetatos / Mieloma Múltiplo Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article