Your browser doesn't support javascript.
loading
Parsimonious mixtures of multivariate contaminated normal distributions.
Punzo, Antonio; McNicholas, Paul D.
Afiliação
  • Punzo A; Department of Economics and Business, University of Catania, Catania, Italy. antonio.punzo@unict.it.
  • McNicholas PD; Department of Mathematics and Statistics, McMaster University, Hamilton, Canada.
Biom J ; 58(6): 1506-1537, 2016 Nov.
Article em En | MEDLINE | ID: mdl-27510372
A mixture of multivariate contaminated normal distributions is developed for model-based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori, adding a flexibility to our approach. Parsimony is introduced via eigen-decomposition of the component covariance matrices, and sufficient conditions for the identifiability of all the members of the resulting family are provided. An expectation-conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. Using a large-scale simulation study, the behavior of the proposed approach is investigated and comparison with well-established finite mixtures is provided. The performance of this novel family of models is also illustrated on artificial and real data.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Modelos Estatísticos Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Modelos Estatísticos Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article