Parsimonious mixtures of multivariate contaminated normal distributions.
Biom J
; 58(6): 1506-1537, 2016 Nov.
Article
em En
| MEDLINE
| ID: mdl-27510372
A mixture of multivariate contaminated normal distributions is developed for model-based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori, adding a flexibility to our approach. Parsimony is introduced via eigen-decomposition of the component covariance matrices, and sufficient conditions for the identifiability of all the members of the resulting family are provided. An expectation-conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. Using a large-scale simulation study, the behavior of the proposed approach is investigated and comparison with well-established finite mixtures is provided. The performance of this novel family of models is also illustrated on artificial and real data.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Modelos Estatísticos
Tipo de estudo:
Risk_factors_studies
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article