Your browser doesn't support javascript.
loading
Genomic Methods Take the Plunge: Recent Advances in High-Throughput Sequencing of Marine Mammals.
Cammen, Kristina M; Andrews, Kimberly R; Carroll, Emma L; Foote, Andrew D; Humble, Emily; Khudyakov, Jane I; Louis, Marie; McGowen, Michael R; Olsen, Morten Tange; Van Cise, Amy M.
Afiliação
  • Cammen KM; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • Andrews KR; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • Carroll EL; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • Foote AD; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • Humble E; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • Khudyakov JI; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • Louis M; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • McGowen MR; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • Olsen MT; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
  • Van Cise AM; From the School of Marine Sciences, University of Maine, Orono, ME 04469 (Cammen); Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136 (Andrews); Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB,
J Hered ; 107(6): 481-95, 2016 11.
Article em En | MEDLINE | ID: mdl-27511190
ABSTRACT
The dramatic increase in the application of genomic techniques to non-model organisms (NMOs) over the past decade has yielded numerous valuable contributions to evolutionary biology and ecology, many of which would not have been possible with traditional genetic markers. We review this recent progression with a particular focus on genomic studies of marine mammals, a group of taxa that represent key macroevolutionary transitions from terrestrial to marine environments and for which available genomic resources have recently undergone notable rapid growth. Genomic studies of NMOs utilize an expanding range of approaches, including whole genome sequencing, restriction site-associated DNA sequencing, array-based sequencing of single nucleotide polymorphisms and target sequence probes (e.g., exomes), and transcriptome sequencing. These approaches generate different types and quantities of data, and many can be applied with limited or no prior genomic resources, thus overcoming one traditional limitation of research on NMOs. Within marine mammals, such studies have thus far yielded significant contributions to the fields of phylogenomics and comparative genomics, as well as enabled investigations of fitness, demography, and population structure. Here we review the primary options for generating genomic data, introduce several emerging techniques, and discuss the suitability of each approach for different applications in the study of NMOs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Genômica / Mamíferos / Biologia Marinha Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Genômica / Mamíferos / Biologia Marinha Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article