Your browser doesn't support javascript.
loading
Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb.
Breton-Provencher, Vincent; Bakhshetyan, Karen; Hardy, Delphine; Bammann, Rodrigo Roberto; Cavarretta, Francesco; Snapyan, Marina; Côté, Daniel; Migliore, Michele; Saghatelyan, Armen.
Afiliação
  • Breton-Provencher V; Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec, Quebec City, Quebec, Canada G1J 2G3.
  • Bakhshetyan K; Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec, Quebec City, Quebec, Canada G1J 2G3.
  • Hardy D; Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec, Quebec City, Quebec, Canada G1J 2G3.
  • Bammann RR; Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec, Quebec City, Quebec, Canada G1J 2G3.
  • Cavarretta F; Department of Mathematics, University of Milan, Milan 20133, Italy.
  • Snapyan M; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
  • Côté D; Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec, Quebec City, Quebec, Canada G1J 2G3.
  • Migliore M; Cellular Neurobiology Unit,Institut Universitaire en santé mentale de Québec, Quebec City, Quebec, Canada G1J 2G3.
  • Saghatelyan A; Centre d'optique, photonique et laser (COPL), Université Laval, Quebec City, Quebec, Canada G1V 0A6.
Nat Commun ; 7: 12659, 2016 08 31.
Article em En | MEDLINE | ID: mdl-27578235
ABSTRACT
Adult-born neurons adjust olfactory bulb (OB) network functioning in response to changing environmental conditions by the formation, retraction and/or stabilization of new synaptic contacts. While some changes in the odour environment are rapid, the synaptogenesis of adult-born neurons occurs over a longer time scale. It remains unknown how the bulbar network functions when rapid and persistent changes in environmental conditions occur but when new synapses have not been formed. Here we reveal a new form of structural remodelling where mature spines of adult-born but not early-born neurons relocate in an activity-dependent manner. Principal cell activity induces directional growth of spine head filopodia (SHF) followed by spine relocation. Principal cell-derived glutamate and BDNF regulate SHF motility and directional spine relocation, respectively; and spines with SHF are selectively preserved following sensory deprivation. Our three-dimensional model suggests that spine relocation allows fast reorganization of OB network with functional consequences for odour information processing.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bulbo Olfatório / Espinhas Dendríticas / Neurogênese / Interneurônios Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bulbo Olfatório / Espinhas Dendríticas / Neurogênese / Interneurônios Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article