Your browser doesn't support javascript.
loading
THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets.
Bonetti, S; Hoffmann, M C; Sher, M-J; Chen, Z; Yang, S-H; Samant, M G; Parkin, S S P; Dürr, H A.
Afiliação
  • Bonetti S; Department of Physics, Stockholm University, Stockholm 10691, Sweden.
  • Hoffmann MC; Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Sher MJ; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Chen Z; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
  • Yang SH; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Samant MG; Department of Physics, Stanford University, Stanford, California 94305, USA.
  • Parkin SS; IBM Almaden Research Center, San Jose, California 95120, USA.
  • Dürr HA; IBM Almaden Research Center, San Jose, California 95120, USA.
Phys Rev Lett ; 117(8): 087205, 2016 Aug 19.
Article em En | MEDLINE | ID: mdl-27588880
We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (∼30 fs). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article