Your browser doesn't support javascript.
loading
Investigation on using high-energy proton beam for total body irradiation (TBI).
Zhang, Miao; Qin, Nan; Jia, Xun; Zou, Wei J; Khan, Atif; Yue, Ning J.
Afiliação
  • Zhang M; Robert Wood Johnson University Hospital, The Cancer Institution of New Jersey-Rutgers University. zhangm3@cinj.rutgers.edu.
J Appl Clin Med Phys ; 17(5): 90-98, 2016 09 08.
Article em En | MEDLINE | ID: mdl-27685117
ABSTRACT
This work investigated the possibility of using proton beam for total body irradia-tion (TBI). We hypothesized the broad-slow-rising entrance dose from a monoen-ergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon-based TBI, it would not require any patient-specific com-pensator or beam spoiler. The hypothesis was first tested by simulating 250 MeV, 275 MeV, and 300 MeV protons irradiating a wedge-shaped water phantom in a paired opposing arrangement using Monte Carlo (MC) method. To allow ± 7.5% dose variation, the maximum water equivalent thickness (WET) of a treatable patient separation was 29 cm for 250 MeV proton, and > 40 cm for 275 MeV and 300 MeV proton. The compared 6 MV photon can only treat patients with up to 15.5 cm water-equivalent separation. In the second step, we simulated the dose deposition from the same beams on a patient's whole-body CT scan. The maximum patient separation in WET was 23 cm. The calculated whole-body dose variations were ± 8.9%, ± 9.0%, ± 9.6%, and ± 14% for 250 MeV proton, 275 MeV proton, 300 MeV proton, and 6 MV photon. At last, we tested the current machine capability to deliver a monoenergetic proton beam with a large uniform field. Experiments were performed on a compact double scattering single-gantry proton system. With its C-shaped gantry design, the source-to-surface distance (SSD) reached 7 m. The measured dose deposition curve had 22 cm relatively flat entrance region. The full width half maximum field size was measured 105 cm. The current scatter filter had to be redesigned to produce a uniform intensity at such treatment distance. In con-clusion, this work demonstrated the possibility of using proton beam for TBI. The current commercially available proton machines would soon be ready for such task.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Irradiação Corporal Total / Imagens de Fantasmas / Terapia com Prótons / Neoplasias Tipo de estudo: Health_economic_evaluation Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Irradiação Corporal Total / Imagens de Fantasmas / Terapia com Prótons / Neoplasias Tipo de estudo: Health_economic_evaluation Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article