Your browser doesn't support javascript.
loading
Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells.
Page, Shyanne; Munsell, Alli; Al-Ahmad, Abraham J.
Afiliação
  • Page S; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 South Coulter Street, Amarillo, TX, USA.
  • Munsell A; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 South Coulter Street, Amarillo, TX, USA.
  • Al-Ahmad AJ; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 South Coulter Street, Amarillo, TX, USA. abraham.al-ahmad@ttuhsc.edu.
Fluids Barriers CNS ; 13(1): 16, 2016 Oct 11.
Article em En | MEDLINE | ID: mdl-27724968
ABSTRACT

BACKGROUND:

Cerebral hypoxia/ischemia (H/I) is an important stress factor involved in the disruption of the blood-brain barrier (BBB) following stroke injury, yet the cellular and molecular mechanisms on how the human BBB responds to such injury remains unclear. In this study, we investigated the cellular response of the human BBB to chemical and environmental H/I in vitro.

METHODS:

In this study, we used immortalized hCMEC/D3 and IMR90 stem-cell derived human brain microvascular endothelial cell lines (IMR90-derived BMECs). Hypoxic stress was achieved by exposure to cobalt chloride (CoCl2) or by exposure to 1 % hypoxia and oxygen/glucose deprivation (OGD) was used to model ischemic injury. We assessed barrier function using both transendothelial electrical resistance (TEER) and sodium fluorescein permeability. Changes in cell junction integrity were assessed by immunocytochemistry and cell viability was assessed by trypan-blue exclusion and by MTS assays. Statistical analysis was performed using one-way analysis of variance (ANOVA).

RESULTS:

CoCl2 selectively disrupted the barrier function in IMR90-derived BMECs but not in hCMEC/D3 monolayers and cytotoxic effects did not drive such disruption. In addition, hypoxia/OGD stress significantly disrupted the barrier function by selectively disrupting tight junctions (TJs) complexes. In addition, we noted an uncoupling between cell metabolic activity and barrier integrity.

CONCLUSIONS:

In this study, we demonstrated the ability of IMR90-derived BMECs to respond to hypoxic/ischemic injury triggered by both chemical and environmental stress by showing a disruption of the barrier function. Such disruption was selectively targeting TJ complexes and was not driven by cellular apoptosis. In conclusion, this study suggests the suitability of stem cell-derived human BMECs monolayers as a model of cerebral hypoxia/ischemia in vitro.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Hipóxia Celular / Junções Íntimas / Células Endoteliais / Microvasos / Glucose Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Hipóxia Celular / Junções Íntimas / Células Endoteliais / Microvasos / Glucose Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article