Your browser doesn't support javascript.
loading
Single-molecule optomechanics in "picocavities".
Benz, Felix; Schmidt, Mikolaj K; Dreismann, Alexander; Chikkaraddy, Rohit; Zhang, Yao; Demetriadou, Angela; Carnegie, Cloudy; Ohadi, Hamid; de Nijs, Bart; Esteban, Ruben; Aizpurua, Javier; Baumberg, Jeremy J.
Afiliação
  • Benz F; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
  • Schmidt MK; Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
  • Dreismann A; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
  • Chikkaraddy R; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
  • Zhang Y; Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
  • Demetriadou A; Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
  • Carnegie C; Blackett Laboratory, London SW7 2AZ, UK.
  • Ohadi H; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
  • de Nijs B; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
  • Esteban R; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
  • Aizpurua J; Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
  • Baumberg JJ; Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain. jjb12@cam.ac.uk aizpurua@ehu.es.
Science ; 354(6313): 726-729, 2016 11 11.
Article em En | MEDLINE | ID: mdl-27846600
ABSTRACT
Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer ("picocavities"), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106 enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article