Your browser doesn't support javascript.
loading
Evidence of genotypic adaptation to the exposure to volcanic risk at the dopamine receptor DRD4 locus.
Faurie, Charlotte; Mettling, Clement; Ali Bchir, Mohamed; Hadmoko, Danang Sri; Heitz, Carine; Lestari, Evi Dwi; Raymond, Michel; Willinger, Marc.
Afiliação
  • Faurie C; Institute of Evolutionary Sciences (ISEM), University of Montpellier, 2 Place Eugène Bataillon, 34090 Montpellier, France.
  • Mettling C; Institute of Evolutionary Sciences (ISEM), University of Montpellier, 2 Place Eugène Bataillon, 34090 Montpellier, France.
  • Ali Bchir M; Institute of Human Genetics, UPR 1142 CNRS, 141 rue de la Cardonille 34396 Montpellier, France.
  • Hadmoko DS; Ecole Nationale du Génie de l'Eau et de l'Environnement, 1 Quai Koch, 67070 Strasbourg, France.
  • Heitz C; Department of Geography and Environmental Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia.
  • Lestari ED; Ecole Nationale du Génie de l'Eau et de l'Environnement, 1 Quai Koch, 67070 Strasbourg, France.
  • Raymond M; Department of Geography and Environmental Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia.
  • Willinger M; Institute of Evolutionary Sciences (ISEM), University of Montpellier, 2 Place Eugène Bataillon, 34090 Montpellier, France.
Sci Rep ; 6: 37745, 2016 12 01.
Article em En | MEDLINE | ID: mdl-27905471
ABSTRACT
Humans have colonized and adapted to extremely diverse environments, and the genetic basis of some such adaptations, for example to high altitude, is understood. In some cases, local or regional variation in selection pressure could also cause behavioural adaptations. Numerous genes influence behaviour, such as alleles at the dopamine receptor locus D4 (DRD4), which are associated with attitude toward risk in experimental settings. We demonstrate genetic differentiation for this gene, but not for five unlinked microsatellite loci, between high- and low risk environments around Mount Merapi, an active volcano in Java, Indonesia. Using a behavioural experiment, we further show that people inhabiting the high risk environment are significantly more risk averse. We provide evidence of a genetic basis for this difference, showing that heterozygotes at the DRD4 locus are more risk averse than either homozygotes. In the high risk environment, allele frequencies are equilibrated, generating a high frequency of heterozygotes. Thus it appears that overdominance (i.e. selective advantage of heterozygotes) generates negative frequency dependent selection, favouring the rarer allele at this locus. Our results therefore provide evidence for adaptation to a marginal habitat through the selection of a neurocognitive trait with a genetic basis.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Assunção de Riscos / Erupções Vulcânicas / Receptores de Dopamina D4 / Genótipo Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Humans País como assunto: Asia Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Assunção de Riscos / Erupções Vulcânicas / Receptores de Dopamina D4 / Genótipo Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Humans País como assunto: Asia Idioma: En Ano de publicação: 2016 Tipo de documento: Article