Your browser doesn't support javascript.
loading
First-passage time approach to controlling noise in the timing of intracellular events.
Ghusinga, Khem Raj; Dennehy, John J; Singh, Abhyudai.
Afiliação
  • Ghusinga KR; Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716.
  • Dennehy JJ; The Graduate Center, City University of New York, New York, NY 10016.
  • Singh A; Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716; absingh@UDel.Edu.
Proc Natl Acad Sci U S A ; 114(4): 693-698, 2017 01 24.
Article em En | MEDLINE | ID: mdl-28069947
ABSTRACT
In the noisy cellular environment, gene products are subject to inherent random fluctuations in copy numbers over time. How cells ensure precision in the timing of key intracellular events despite such stochasticity is an intriguing fundamental problem. We formulate event timing as a first-passage time problem, where an event is triggered when the level of a protein crosses a critical threshold for the first time. Analytical calculations are performed for the first-passage time distribution in stochastic models of gene expression. Derivation of these formulas motivates an interesting question Is there an optimal feedback strategy to regulate the synthesis of a protein to ensure that an event will occur at a precise time, while minimizing deviations or noise about the mean? Counterintuitively, results show that for a stable long-lived protein, the optimal strategy is to express the protein at a constant rate without any feedback regulation, and any form of feedback (positive, negative, or any combination of them) will always amplify noise in event timing. In contrast, a positive feedback mechanism provides the highest precision in timing for an unstable protein. These theoretical results explain recent experimental observations of single-cell lysis times in bacteriophage [Formula see text] Here, lysis of an infected bacterial cell is orchestrated by the expression and accumulation of a stable [Formula see text] protein up to a threshold, and precision in timing is achieved via feedforward rather than feedback control. Our results have broad implications for diverse cellular processes that rely on precise temporal triggering of events.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas / Fenômenos Fisiológicos Celulares Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas / Fenômenos Fisiológicos Celulares Idioma: En Ano de publicação: 2017 Tipo de documento: Article