Your browser doesn't support javascript.
loading
Large dense-core vesicle exocytosis from mouse dorsal root ganglion neurons is regulated by neuropeptide Y.
Bost, Anneka; Shaib, Ali H; Schwarz, Yvonne; Niemeyer, Barbara A; Becherer, Ute.
Afiliação
  • Bost A; Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany.
  • Shaib AH; Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany.
  • Schwarz Y; Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany.
  • Niemeyer BA; Molecular Biophysics, CIPMM, Saarland University, 66421 Homburg/Saar, Germany.
  • Becherer U; Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany. Electronic address: Ute.Becherer@uks.eu.
Neuroscience ; 346: 1-13, 2017 03 27.
Article em En | MEDLINE | ID: mdl-28089870
ABSTRACT
Peptidergic dorsal root ganglion (DRG) neurons transmit sensory and nociceptive information from the periphery to the central nervous system. Their synaptic activity is profoundly affected by neuromodulatory peptides stored and released from large dense-core vesicles (LDCVs). However, the mechanism of peptide secretion from DRG neurons is poorly understood. Using total internal reflection fluorescence microscopy (TIRFM), we visualized individual LDCVs loaded with fluorescent neuropeptide Y (NPY) and analyzed their stimulation-dependent release. We tested several protocols and found an overall low stimulation-secretion coupling that increased after raising intracellular Ca2+ concentration by applying a weak pre-stimulus. Interestingly, the stimulation protocol also influenced the mechanism of LDCV fusion. Depolarization of DRG neurons with a solution containing 60mM KCl triggered full fusion, kiss-and-run, and kiss-and-stay exocytosis with equal frequency. In contrast, field electrode stimulation primarily induced full fusion exocytosis. Finally, our results indicate that NPY can promote LDCV secretion. These results shed new light on the mechanism of NPY action during modulation of DRG neuron activity, an important pathway in the treatment of chronic pain.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neuropeptídeo Y / Vesículas Secretórias / Exocitose / Gânglios Espinais / Neurônios Tipo de estudo: Guideline Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neuropeptídeo Y / Vesículas Secretórias / Exocitose / Gânglios Espinais / Neurônios Tipo de estudo: Guideline Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article