Your browser doesn't support javascript.
loading
Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers.
Zhang, Yu; Yan, Haidong; Jiang, Xiaomei; Wang, Xiaoli; Huang, Linkai; Xu, Bin; Zhang, Xinquan; Zhang, Lexin.
Afiliação
  • Zhang Y; Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China.
  • Yan H; IRTA. Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB), Campus UAB - Edifici CRAG, Bellaterra - Cerdanyola del Vallès, Barcelona, 08193 Spain.
  • Jiang X; Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China.
  • Wang X; Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China.
  • Huang L; Guizhou Institute of Prataculture, Guiyang, 550006 PR China.
  • Xu B; Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China.
  • Zhang X; College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China.
  • Zhang L; Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China.
Hereditas ; 153: 4, 2016.
Article em En | MEDLINE | ID: mdl-28096766
BACKGROUND: To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass (Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. RESULTS: In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei's gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 (P < 0.01). CONCLUSIONS: The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Variação Genética / Desequilíbrio de Ligação / Genética Populacional / Panicum Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Variação Genética / Desequilíbrio de Ligação / Genética Populacional / Panicum Idioma: En Ano de publicação: 2016 Tipo de documento: Article