Your browser doesn't support javascript.
loading
We can see clearly now: optical clearing and kidney morphometrics.
Puelles, Victor G; Moeller, Marcus J; Bertram, John F.
Afiliação
  • Puelles VG; aCardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria, Australia bDivision of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
Curr Opin Nephrol Hypertens ; 26(3): 179-186, 2017 05.
Article em En | MEDLINE | ID: mdl-28198736
ABSTRACT
PURPOSE OF REVIEW For more than a century, kidney microscopic imaging was driven by the need for greater and greater resolution. This was in part provided by the analysis of thinner tissue sections. As a result, most kidney morphometry was performed in 'two' dimensions, largely ignoring the three-dimensionality of kidney tissue and cells. Although stereological techniques address this issue, they have generally been considered laborious and expensive and thereby unattractive for routine use. RECENT

FINDINGS:

The past 2 decades have witnessed the development of optical clearing techniques, which enables visualization of thick slices of kidney tissue and even whole kidneys. This review describes the three main optical clearing strategies (solvent-based, aqueous-based and hydrogel embedding) with their respective advantages and disadvantages. We also describe how optical clearing provides new approaches to kidney morphometrics, including general kidney morphology (i.e. identification and quantitation of atubular glomeruli), glomerular numbers and volumes, numbers of specific glomerular cells (i.e. podocytes) and cell-specific stress-related changes (i.e. foot process effacement).

SUMMARY:

The new clearing and morphometric approaches described in this review provide a new toolbox for imaging and quantification of kidney microanatomy. These approaches will make it easier to visualize the three-dimensional microanatomy of the kidney and decrease our reliance on biased two-dimensional morphometric techniques and time-consuming stereological approaches. They will also accelerate our research of structure-function relations in the healthy and diseased kidney.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento Tridimensional / Rim / Microscopia Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento Tridimensional / Rim / Microscopia Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article