Your browser doesn't support javascript.
loading
[Effect of telomerase activation on biological behaviors of neural stem cells in rats with hypoxic-ischemic insults].
Meng, Jun-Jie; Li, Shi-Ping; Zhao, Feng-Yan; Tong, Yu; Mu, De-Zhi; Qu, Yi.
Afiliação
  • Meng JJ; Department of Pediatrics, West China Second University Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education/Key Laboratory of Development and Related Diseases of Women and Children, Chengdu 610041, China. quyi712002@163.com.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(2): 229-236, 2017 Feb.
Article em Zh | MEDLINE | ID: mdl-28202125
ABSTRACT

OBJECTIVE:

To investigate the effect of telomerase activation on biological behaviors of neural stem cells after hypoxic-ischemic insults.

METHODS:

The neural stem cells passaged in vitro were divided into four groups control, oxygen-glucose deprivation (OGD), OGD+cycloastragenol (CAG) high concentration (final concentration of 25 µM), and OGD+CAG low concentration (final concentration of 10 µM). The latter three groups were subjected to OGD. Telomerase reverse transcriptase (TERT) expression level was evaluated by Western blot. Telomerase activity was detected by telomerase repeat amplification protocol (TRAP). Cell number and neural sphere diameter were measured under a microscope. The activity of lactate dehydrogenase (LDH) was examined by chemiluminescence. Cell proliferation rate and apoptosis were detected by flow cytometry.

RESULTS:

After OGD insults, obvious injury of neural stem cells was observed, including less cell number, smaller neural sphere, more dead cells, lower proliferation rate and decreased survival rate. In CAG-treated groups, there were higher TERT expression level and telomerase activity compared with the control group (P<0.05). In comparison with the OGD group, CAG treatment attenuated cell loss (P<0.05) and neural sphere diameter decrease (P<0.05), promoted cell proliferation (P<0.05), and increased cell survival rate (P<0.05). Low and high concentrations of CAG had similar effects on proliferation and survival of neural stem cells (P>0.05). In the normal cultural condition, CAG treatment also enhanced TERT expression (P<0.05) and increased cell numbers (P<0.05) and neural sphere diameter (P<0.05) compared with the control group.

CONCLUSIONS:

Telomerase activation can promote the proliferation and improve survival of neural stem cells under the state of hypoxic-ischemic insults, suggesting telomerase activators might be potential agents for the therapy of hypoxic-ischemic brain injury.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Telomerase / Hipóxia-Isquemia Encefálica / Células-Tronco Neurais Tipo de estudo: Guideline Limite: Animals Idioma: Zh Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Telomerase / Hipóxia-Isquemia Encefálica / Células-Tronco Neurais Tipo de estudo: Guideline Limite: Animals Idioma: Zh Ano de publicação: 2017 Tipo de documento: Article