Your browser doesn't support javascript.
loading
Synergistic Enhancement of Electrocatalytic CO2 Reduction with Gold Nanoparticles Embedded in Functional Graphene Nanoribbon Composite Electrodes.
Rogers, Cameron; Perkins, Wade S; Veber, Gregory; Williams, Teresa E; Cloke, Ryan R; Fischer, Felix R.
Afiliação
  • Rogers C; Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States.
  • Perkins WS; Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States.
  • Veber G; Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States.
  • Williams TE; The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
  • Cloke RR; Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States.
  • Fischer FR; Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States.
J Am Chem Soc ; 139(11): 4052-4061, 2017 03 22.
Article em En | MEDLINE | ID: mdl-28234002
ABSTRACT
Regulating the complex environment accounting for the stability, selectivity, and activity of catalytic metal nanoparticle interfaces represents a challenge to heterogeneous catalyst design. Here we demonstrate the intrinsic performance enhancement of a composite material composed of gold nanoparticles (AuNPs) embedded in a bottom-up synthesized graphene nanoribbon (GNR) matrix for the electrocatalytic reduction of CO2. Electrochemical studies reveal that the structural and electronic properties of the GNR composite matrix increase the AuNP electrochemically active surface area (ECSA), lower the requisite CO2 reduction overpotential by hundreds of millivolts (catalytic onset > -0.2 V versus reversible hydrogen electrode (RHE)), increase the Faraday efficiency (>90%), markedly improve stability (catalytic performance sustained over >24 h), and increase the total catalytic output (>100-fold improvement over traditional amorphous carbon AuNP supports). The inherent structural and electronic tunability of bottom-up synthesized GNR-AuNP composites affords an unrivaled degree of control over the catalytic environment, providing a means for such profound effects as shifting the rate-determining step in the electrocatalytic reduction of CO2 to CO, and thereby altering the electrocatalytic mechanism at the nanoparticle surface.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Nanotubos de Carbono / Nanopartículas Metálicas / Técnicas Eletroquímicas / Ouro / Grafite Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Nanotubos de Carbono / Nanopartículas Metálicas / Técnicas Eletroquímicas / Ouro / Grafite Idioma: En Ano de publicação: 2017 Tipo de documento: Article