Impact of mild orthostatic stress on aortic-cerebral hemodynamic transmission: insight from the frequency domain.
Am J Physiol Heart Circ Physiol
; 312(5): H1076-H1084, 2017 May 01.
Article
em En
| MEDLINE
| ID: mdl-28258058
High cerebral pressure and flow fluctuations could be a risk for future cerebrovascular disease. This study aims to determine whether acute systemic vasoconstriction affects the dynamic pulsatile hemodynamic transmission from the aorta to the brain. We applied a stepwise lower body negative pressure (LBNP) (-10, -20, and -30 mmHg) in 15 young men to induce systemic vasoconstriction. To elucidate the dynamic relationship between the changes in aortic pressure (AoP; estimated from the radial arterial pressure waveforms) and the cerebral blood flow velocity (CBFV) at the middle cerebral artery (via a transcranial Doppler), frequency-domain analysis characterized the beat-to-beat slow oscillation (0.02-0.30 Hz) and the intra-beat rapid change (0.78-9.69 Hz). The systemic vascular resistance gradually and significantly increased throughout the LBNP protocol. In the low-frequency range (LF: 0.07-0.20 Hz) of a slow oscillation, the normalized transfer function gain of the steady-state component (between mean AoP and mean CBFV) remained unchanged, whereas that of the pulsatile component (between pulsatile AoP and pulsatile CBFV) was significantly augmented during -20 and -30 mmHg of LBNP (+28.8% and +32.4% vs. baseline). Furthermore, the relative change in the normalized transfer function gain of the pulsatile component at the LF range correlated with the corresponding change in systemic vascular resistance (r = 0.41, P = 0.005). Regarding the intra-beat analysis, the normalized transfer function gain from AoP to CBFV was not significantly affected by the LBNP stimulation (P = 0.77). Our findings suggest that systemic vasoconstriction deteriorates the dampening effect on the pulsatile hemodynamics toward the brain, particularly in slow oscillations (e.g., 0.07-0.20 Hz).NEW & NOTEWORTHY We characterized the pulsatile hemodynamic transmission from the heart to the brain by frequency-domain analysis. The low-frequency transmission was augmented with a mild LBNP stimulation partly due to the elevated systemic vascular resistance. A systemic vasoconstriction deteriorates the dampening effect on slow oscillations of pulsatile hemodynamics toward the brain.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Aorta
/
Velocidade do Fluxo Sanguíneo
/
Fluxo Pulsátil
/
Circulação Cerebrovascular
/
Pressão Arterial
/
Pressão Negativa da Região Corporal Inferior
Limite:
Adult
/
Humans
/
Male
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article