Your browser doesn't support javascript.
loading
Automatic Grasp Selection using a Camera in a Hand Prosthesis.
DeGol, Joseph; Akhtar, Aadeel; Manja, Bhargava; Bretl, Timothy.
Afiliação
  • DeGol J; University of Illinois, Urbana, IL 61801, USA.
  • Akhtar A; University of Illinois, Urbana, IL 61801, USA.
  • Manja B; University of Illinois, Urbana, IL 61801, USA.
  • Bretl T; University of Illinois, Urbana, IL 61801, USA.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 431-434, 2016 Aug.
Article em En | MEDLINE | ID: mdl-28261002
In this paper, we demonstrate how automatic grasp selection can be achieved by placing a camera in the palm of a prosthetic hand and training a convolutional neural network on images of objects with corresponding grasp labels. Our labeled dataset is built from common graspable objects curated from the ImageNet dataset and from images captured from our own camera that is placed in the hand. We achieve a grasp classification accuracy of 93.2% and show through real-time grasp selection that using a camera to augment current electromyography controlled prosthetic hands may be useful.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Próteses e Implantes / Fotografação / Força da Mão / Mãos Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Próteses e Implantes / Fotografação / Força da Mão / Mãos Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article