Your browser doesn't support javascript.
loading
Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.
Schouten, Tijn M; Koini, Marisa; Vos, Frank de; Seiler, Stephan; Rooij, Mark de; Lechner, Anita; Schmidt, Reinhold; Heuvel, Martijn van den; Grond, Jeroen van der; Rombouts, Serge A R B.
Afiliação
  • Schouten TM; Institute of Psychology, Leiden University, The Netherlands; Department of Radiology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, The Netherlands. Electronic address: t.m.schouten@fsw.leidenuniv.nl.
  • Koini M; Department of Neurology, Medical University of Graz, Austria.
  • Vos F; Institute of Psychology, Leiden University, The Netherlands; Department of Radiology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, The Netherlands.
  • Seiler S; Department of Neurology, Medical University of Graz, Austria.
  • Rooij M; Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, The Netherlands.
  • Lechner A; Department of Neurology, Medical University of Graz, Austria.
  • Schmidt R; Department of Neurology, Medical University of Graz, Austria.
  • Heuvel MVD; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, The Netherlands.
  • Grond JV; Department of Radiology, Leiden University, The Netherlands.
  • Rombouts SARB; Institute of Psychology, Leiden University, The Netherlands; Department of Radiology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, The Netherlands.
Neuroimage ; 152: 476-481, 2017 05 15.
Article em En | MEDLINE | ID: mdl-28315741
Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MRI.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Imagem de Difusão por Ressonância Magnética / Doença de Alzheimer Tipo de estudo: Guideline / Screening_studies Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Imagem de Difusão por Ressonância Magnética / Doença de Alzheimer Tipo de estudo: Guideline / Screening_studies Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2017 Tipo de documento: Article