Fast and Highly Sensitive Ionic-Polymer-Gated WS2 -Graphene Photodetectors.
Adv Mater
; 29(23)2017 Jun.
Article
em En
| MEDLINE
| ID: mdl-28418620
The combination of graphene with semiconductor materials in heterostructure photodetectors enables amplified detection of femtowatt light signals using micrometer-scale electronic devices. Presently, long-lived charge traps limit the speed of such detectors, and impractical strategies, e.g., the use of large gate-voltage pulses, have been employed to achieve bandwidths suitable for applications such as video-frame-rate imaging. Here, atomically thin graphene-WS2 heterostructure photodetectors encapsulated in an ionic polymer are reported, which are uniquely able to operate at bandwidths up to 1.5 kHz whilst maintaining internal gain as large as 106 . Highly mobile ions and the nanometer-scale Debye length of the ionic polymer are used to screen charge traps and tune the Fermi level of the graphene over an unprecedented range at the interface with WS2 . Responsivity R = 106 A W-1 and detectivity D* = 3.8 × 1011 Jones are observed, approaching that of single-photon counters. The combination of both high responsivity and fast response times makes these photodetectors suitable for video-frame-rate imaging applications.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article