Your browser doesn't support javascript.
loading
Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data.
González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría.
Afiliação
  • González-Ferreiro E; Unidad de Gestión Forestal Sostenible, Departamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela, Lugo, Spain.
  • Arellano-Pérez S; Unidad de Gestión Forestal Sostenible, Departamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela, Lugo, Spain.
  • Castedo-Dorado F; Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, Campus de Ponferrada, Ponferrada, Spain.
  • Hevia A; Sustainable Forest Management Area, Forest and Wood Technology Research Centre (CETEMAS), Pumarabule, Carbayín, Siero-Asturias, Spain.
  • Vega JA; Centro de Investigación Forestal de Lourizán, Pontevedra, Spain.
  • Vega-Nieva D; Instituto de Silvicultura e Industria de la madera, Universidad Juárez del Estado de Durango, Ciudad Universitaria, Durango, Durango, México.
  • Álvarez-González JG; Unidad de Gestión Forestal Sostenible, Departamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela, Lugo, Spain.
  • Ruiz-González AD; Unidad de Gestión Forestal Sostenible, Departamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela, Lugo, Spain.
PLoS One ; 12(4): e0176114, 2017.
Article em En | MEDLINE | ID: mdl-28448524
ABSTRACT
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Florestas / Agricultura Florestal / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Florestas / Agricultura Florestal / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article