Your browser doesn't support javascript.
loading
A comprehensive multi-omics approach uncovers adaptations for growth and survival of Pseudomonas aeruginosa on n-alkanes.
Grady, Sarah L; Malfatti, Stephanie A; Gunasekera, Thusitha S; Dalley, Brian K; Lyman, Matt G; Striebich, Richard C; Mayhew, Michael B; Zhou, Carol L; Ruiz, Oscar N; Dugan, Larry C.
Afiliação
  • Grady SL; Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA. grady7@llnl.gov.
  • Malfatti SA; Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
  • Gunasekera TS; Environmental Microbiology Group, University of Dayton Research Institute, University of Dayton, Dayton, OH, 45469, USA.
  • Dalley BK; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
  • Lyman MG; Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
  • Striebich RC; Environmental Microbiology Group, University of Dayton Research Institute, University of Dayton, Dayton, OH, 45469, USA.
  • Mayhew MB; Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
  • Zhou CL; Computing Applications and Research Department, Global Security Computing and Applications Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
  • Ruiz ON; Fuels and Energy Branch, Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA.
  • Dugan LC; Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
BMC Genomics ; 18(1): 334, 2017 04 28.
Article em En | MEDLINE | ID: mdl-28454561
ABSTRACT

BACKGROUND:

Examination of complex biological systems has long been achieved through methodical investigation of the system's individual components. While informative, this strategy often leads to inappropriate conclusions about the system as a whole. With the advent of high-throughput "omic" technologies, however, researchers can now simultaneously analyze an entire system at the level of molecule (DNA, RNA, protein, metabolite) and process (transcription, translation, enzyme catalysis). This strategy reduces the likelihood of improper conclusions, provides a framework for elucidation of genotype-phenotype relationships, and brings finer resolution to comparative genomic experiments. Here, we apply a multi-omic approach to analyze the gene expression profiles of two closely related Pseudomonas aeruginosa strains grown in n-alkanes or glycerol.

RESULTS:

The environmental P. aeruginosa isolate ATCC 33988 consumed medium-length (C10-C16) n-alkanes more rapidly than the laboratory strain PAO1, despite high genome sequence identity (average nucleotide identity >99%). Our data shows that ATCC 33988 induces a characteristic set of genes at the transcriptional, translational and post-translational levels during growth on alkanes, many of which differ from those expressed by PAO1. Of particular interest was the lack of expression from the rhl operon of the quorum sensing (QS) system, resulting in no measurable rhamnolipid production by ATCC 33988. Further examination showed that ATCC 33988 lacked the entire lasI/lasR arm of the QS response. Instead of promoting expression of QS genes, ATCC 33988 up-regulates a small subset of its genome, including operons responsible for specific alkaline proteases and sphingosine metabolism.

CONCLUSION:

This work represents the first time results from RNA-seq, microarray, ribosome footprinting, proteomics, and small molecule LC-MS experiments have been integrated to compare gene expression in bacteria. Together, these data provide insights as to why strain ATCC 33988 is better adapted for growth and survival on n-alkanes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Biologia Computacional / Alcanos Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Biologia Computacional / Alcanos Idioma: En Ano de publicação: 2017 Tipo de documento: Article