Your browser doesn't support javascript.
loading
Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration.
Gilbert-Girard, Shella; Gravel, Annie; Artusi, Sara; Richter, Sara N; Wallaschek, Nina; Kaufer, Benedikt B; Flamand, Louis.
Afiliação
  • Gilbert-Girard S; Division of Infectious and Immune Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.
  • Gravel A; Division of Infectious and Immune Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.
  • Artusi S; Department of Molecular Medicine, University of Padua, Padua, Italy.
  • Richter SN; Department of Molecular Medicine, University of Padua, Padua, Italy.
  • Wallaschek N; Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
  • Kaufer BB; Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
  • Flamand L; Division of Infectious and Immune Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada Louis.flamand@crchul.ulaval.ca.
J Virol ; 91(14)2017 07 15.
Article em En | MEDLINE | ID: mdl-28468887
Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency (P < 0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A.IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the current study, we have examined the effects of a G-quadruplex binding and stabilizing agent, BRACO-19, on HHV-6A chromosomal integration. By stabilizing G-quadruplex structures, BRACO-19 affects the ability of the telomerase complex to elongate telomeres. Our results indicate that BRACO-19 reduces the number of clones harboring integrated HHV-6A. This study is the first of its kind and suggests that telomerase activity is essential to restore a functional telomere of adequate length following HHV-6A integration.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Integração Viral / Telômero / Herpesvirus Humano 6 / Quadruplex G / Conformação de Ácido Nucleico Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Integração Viral / Telômero / Herpesvirus Humano 6 / Quadruplex G / Conformação de Ácido Nucleico Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article