MnO2 Nanowire/Biomass-Derived Carbon from Hemp Stem for High-Performance Supercapacitors.
Langmuir
; 33(21): 5140-5147, 2017 05 30.
Article
em En
| MEDLINE
| ID: mdl-28482156
Hierarchical 3D nanostructures based on waste biomass are being offered as promising materials for energy storage due to their processabilities, multifunctionalities, environmental benignities, and low cost. Here we report a facile, inexpensive, and scalable strategy for the fabrication of hierarchical porous 3D structure as electrode materials for supercapacitors based on MnO2 nanowires and hemp-derived activated carbon (HC). Vertical MnO2 wires are uniformly deposited onto the surface of HC using a one-step hydrothermal method to produce hierarchical porous structures with conductive interconnected 3D networks. HC acts as a near-ideal 3D current collector and anchors electroactive materials, and this confers a specific capacitance of 340 F g-1 at 1 A g-1 with a high rate capability (88% retention) of the 3D MnO2/HC composite because of its open-pore system, which facilitates ion and electron transports and synergistic contribution of two energy-storage materials. Moreover, asymmetric supercapacitors fabricated using 3D HC as the anode and 3D MnO2/HC as the cathode are able to store 33.3 Wh kg-1 of energy and have a power delivery of 14.8 kW kg-1.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article